Nuprl Lemma : rel_exp_iff
0,22
postcript
pdf
n
:
,
T
:Type,
R
:(
T
T
Prop),
x
,
y
:
T
.
(
x
rel_exp(
T
;
R
;
n
)
y
)
(
z
:
T
. 0<
n
& (
x
rel_exp(
T
;
R
;
n
-1)
z
) & (
z
R
y
))
n
= 0
&
x
=
y
latex
Definitions
Dec(
P
)
,
SQType(
T
)
,
Unit
,
,
b
,
b
,
{
T
}
,
i
=
j
,
P
Q
,
A
B
,
A
,
False
,
P
Q
,
P
Q
,
x
:
A
.
B
(
x
)
,
A
&
B
,
P
&
Q
,
x
f
y
,
rel_exp(
T
;
R
;
n
)
,
Prop
,
i
j
,
P
Q
,
x
:
A
.
B
(
x
)
,
t
T
,
Lemmas
nat
wf
,
nat
properties
,
ge
wf
,
rel
exp
wf
,
le
wf
,
assert
wf
,
not
wf
,
bnot
wf
,
bool
wf
,
eq
int
wf
,
assert
of
eq
int
,
not
functionality
wrt
iff
,
assert
of
bnot
,
iff
transitivity
,
eqff
to
assert
,
eqtt
to
assert
,
decidable
int
equal
,
bool
sq
,
bool
cases
origin